Schur type inequalities for multivariate polynomials on convex bodies
نویسندگان
چکیده
In this note we give sharp Schur type inequalities for multivariate polynomials with generalized Jacobi weights on arbitrary convex domains. In particular, these results yield estimates for norms of factors of multivariate polynomials.
منابع مشابه
On Bernstein and Markov-Type Inequalities for Multivariate Polynomials on Convex Bodies
Let p n be a polynomial of m variables and total degree n such that & p n & C(K) =1, where K/R m is a convex body. In this paper we discuss some local and uniform estimates for the magnitude of grad p n under the above conditions. 1999 Academic Press Key Words: multivariate polynomials; convex bodies; gradient and directional derivative of polynomials.
متن کاملOn Fejér Type Inequalities for (η1,η2)-Convex Functions
In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...
متن کاملMonge-ampère Measures for Convex Bodies and Bernstein-markov Type Inequalities
We use geometric methods to calculate a formula for the complex Monge-Ampère measure (ddVK) n, for K Rn ⊂ Cn a convex body and VK its Siciak-Zaharjuta extremal function. Bedford and Taylor had computed this for symmetric convex bodies K. We apply this to show that two methods for deriving Bernstein-Markov type inequalities, i.e., pointwise estimates of gradients of polynomials, yield the same r...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کامل